

Eigenvalue – Eigenvector

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani maryam.ramezani@sharif.edu

Table of contents

01

Introduction

02

Eigenvector &
Eigenvalue

03

Characteristic
Polynomial

04

Properties

01

C

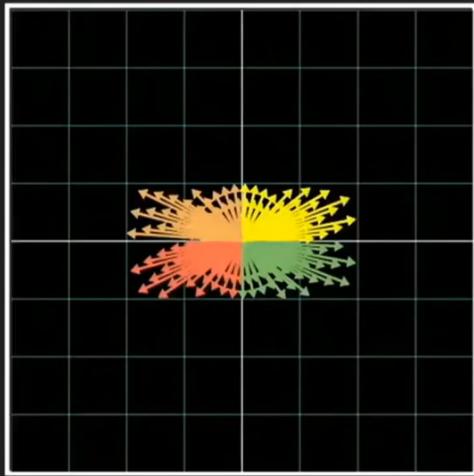
Introduction

Note

- In this slide, matrix is a square matrix!

Review

Diagonal Matrix: Stretching each axis differently



$$\begin{bmatrix} 0.5 & 0.0 \\ 0.0 & 2.0 \end{bmatrix}$$

vector is arrow

Orthogonal Matrix

Definition

- ❑ A matrix is orthogonal if its columns are:
 - orthogonal
 - has norm 1

02

Eigenvector & Eigenvalue

Motivation

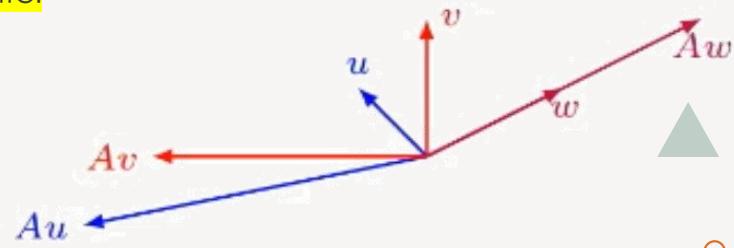
□ $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$

$$u = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \Rightarrow Au = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$$

$$v = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \Rightarrow Av = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ 0 \end{bmatrix}$$

$$w = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow Aw = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

□ Vector "w" keeps the straight, but changes the scale.



Eigenvector & Eigenvalue

Definition

An **eigenvector** of a **square $n \times n$ matrix A** is nonzero vector v such that $Av = \lambda v$ for some scalar λ . A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution v of $Av = \lambda v$; such an v is called an *eigenvector corresponding to λ* .

- An eigenvector must be nonzero, by definition, but an eigenvalue may be zero.

Example

- $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\lambda = 2$

- Show that 7 is an eigenvalue of matrix B, and find the corresponding eigenvectors.

$$B = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

Eigenspace

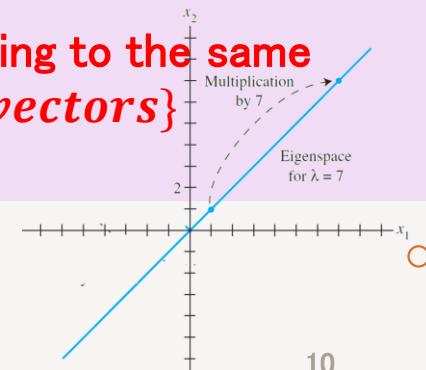
Note

λ is an eigenvalue of an $n \times n$ matrix:

$$Av = \lambda v \Rightarrow (A - \lambda I)v = 0$$

The set of all solutions of above is just the null space of the matrix $A - \lambda I$. So this set is the *subspace* of \mathbb{R}^n and is called the **eigenspace** of A corresponding to λ . The eigenspace consists of the zero vector and all the eigenvectors corresponding to λ .

Eigenspace: A vector space formed by eigenvectors corresponding to the same eigenvalue and the origin point. *span{corresponding eigenvectors}*



03

C

Characteristic Polynomial

Characteristic Polynomial

Note

◻ $Av = \lambda v \Rightarrow Av - \lambda v I = 0 \Rightarrow (A - \lambda I)v = 0 \ v \neq 0$

- $v \in N(A - \lambda I)$
- $A - \lambda I$ must be singular.
- Proof that for finding the eigenvalue we should solve the determinate zero equation. Look at nullspace, rank and nullity theorem, singular matrix, and det zero!

◻ **Characteristic polynomial** $\det(A - \lambda I)$

◻ **Characteristic equation** $\det(A - \lambda I) = 0$

◻ If λ is an eigenvalue of A , then the subspace $E_\lambda = \{\text{span}[v] \mid Av = \lambda v\}$ is called the **eigenspace** of A associated with λ . (This subspace contains all the span of eigenvectors with eigenvalue λ , and also the zero vector.)

◻ **Eigenvector is basis for eigenspace.**

◻ Set of all eigenvalues of matrix is $\sigma(A)$ named **spectrum of a matrix**

Characteristic Polynomial

Note

- ❑ Instead of $\det(A - \lambda I)$, we will compute $\det(\lambda I - A)$. Why?
 - $\det(A - \lambda I) = (-1)^n \det(\lambda I - A)$
 - Matrix $n \times n$ with real values has eigenvalues.

Finding Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix.

1. First, find the eigenvalues λ of A by solving the equation $\det(\lambda I - A) = 0$.
2. For each λ , find the basic eigenvectors $X \neq 0$ by finding the basic solutions to $(\lambda I - A)X = 0$.

To verify your work, make sure that $AX = \lambda X$ for each λ and associated eigenvector X .

Example

Find eigenvalues and eigenvectors, eigenspace (E), and *spectrum* of matrix $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$:

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - 3\lambda + 2 = 0 \Rightarrow \begin{cases} \lambda_1 = 1 \\ \lambda_2 = 2 \end{cases}$$

$$\left. \begin{cases} \lambda_1 = 1 \\ (A - \lambda_1 I)q_1 = 0 \end{cases} \right\} \Rightarrow q_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\left. \begin{cases} \lambda_2 = 2 \\ (A - \lambda_2 I)q_2 = 0 \end{cases} \right\} \Rightarrow q_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Eigenvalues = {1, 2}

Eigenvectors = $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$

$E_1(A) = \text{span}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ $E_2(A) = \text{span}\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$

$\sigma(A) = \{1, 2\}$

$$AQ = Q\Lambda \Rightarrow \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

04

Properties

Expanding the Characteristic equation of A to polynomial form

Theorem (1)

To have (1) scalar for largest degree instead of $|A - \lambda I|$, consider $|\lambda I - A|$

$$f(\lambda) = |\lambda I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0 \quad \text{Proof?}$$

- The n roots of this polynomial are eigenvalues!
 - $f(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$
- What is c_{n-1} ?
 - $c_{n-1} = -\text{trace}(A)$
- What is c_0 ?
 - $c_0 = \det(-A) = (-1)^n \det(A)$

Sum and Product of eigenvalues

Theorem (2)

If A is an $n \times n$ matrix, then the sum of the n eigenvalues of A is the trace of A .
(coefficient c_{n-1} in expanded characteristic equation)

Other view: $f(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \dots (\lambda - \lambda_n)$

$$|\lambda I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + \dots + c_1\lambda + c_0$$

Proof?

Theorem (3)

If A is an $n \times n$ matrix, then the product of the n eigenvalues is the determinant of A .

(coefficient c_0 in expanded characteristic equation)

Proof?

Determinant and Eigenvalue

Theorem (4)

$$0 \in \sigma(A) \Leftrightarrow |A|=0$$

Proof?

Conclusion: The Invertible Matrix Theorem

Let A be an $n \times n$ matrix. Then A is invertible if and only if:

- The number 0 is not an eigenvalue of A .
- The determinant of A is not zero.

An Important Theorem!

Theorem (5)

The eigenvalues of a triangular (upper/lower/diagonal) matrix are the entries on its main diagonal. For the diagonal matrix the eigenvectors are e_i s. For upper /lower matrices, Q matrix of $\mathbf{AQ} = \mathbf{Q}\Lambda$ will be upper/lower triangular matrix.

Proof?

Real Eigenvalues of different matrices

- Projection matrix
 - 0, 1
 - If $\text{rank}(P)=r$ with n columns, what are the repetition of the eigenvalues?
 - 0: $n-r$ 1: r
- Reflection matrix
 - 1, -1
- Permutation matrix
 - 1, -1

Characteristic Equation

Example

Find the eigenvalues with their repetition and eigenvectors:

□ $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

□ The characteristic polynomial of a 6×6 matrix is $\lambda^6 - 4\lambda^5 - 12\lambda^4$.

□ $B = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$

□ $C = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$

□ $D = \begin{bmatrix} -2 & 1 \\ -2 & 0 \end{bmatrix}$

Eigenvalues of matrix products

Theorem (6)

The nonzero Eigenvalues of AB equal to the nonzero eigenvalues of BA .

Proof?